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Review

Machine Learning

Crystalline Structure

● Simulations

● Property Prediction

Density Functional 
Theory (DFT)

● Common method used for 
calculating material properties.

○ Bandgap
○ Formation Energy 

● Accurate but high computation.

● Arranged in a laice

● Laice composed of 
unit cells

● Elements defined in a 
unit cell
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Hypothesis
Descriptive features can be used to 
represent the crystalline structure and 
predict properties such as formation energy 
and bandgap. 
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Methodology 
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Process

Crystalline Structure

Features

Regression Model

Property Prediction
(Bandgap & Formation Energy)
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Features

Material Structure Defined:

● Coordinates of all elements
● Unit Cell

Descriptive Features:

Number of each element in unit cell
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Regression Model

Random Forest 
Regression Model 

(Bandgap)
BandGap

Random Forest 
Regression Model 
(Formation Energy)

Formation Energy 
per Atom

Feature based on 
atom positions 
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Results
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Random Forest Regression for Formation 
Energy Prediction

R2: 0.8422261973343066
Variance: 0.8423713682632842

R2: 0.8002507610815063
Variance: 0.8003173143298815

Bandgap Prediction Using only Elements Bandgap Prediction Using Calculated 
Feature and Elements
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Random Forest Regression for Bandgap 
Prediction

Bandgap Prediction Using Calculated 
Features and Elements

R2: 0.584878101702888
Variance: 0.5855821960922392

R2: 0.6416132047560574
Variance: 0.6416381704153014

Bandgap Prediction Using only Elements
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Feature Importance for Formation Energy & 
Bandgap Models

Band Gap Feature ImportanceFormation Energy  Feature Importance

Feature Feature
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Conclusions
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Conclusion

● Crystalline Structure is more relevant in predicting the bandgap than the formation 
energy

● The number of each element in the unit cell is related to the formation energy

Summary

Model Highest R2 Value Features Used

Formation Energy 0.84 # of each element

Bandgap 0.64 # of each element & 
structure feature
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